11 research outputs found

    Matrix pencil method for vital sign detection from signals acquired by microwave sensors

    Get PDF
    Microwave sensors have recently been introduced as high-temporal resolution sensors, which could be used in the contactless monitoring of artery pulsation and breathing. However, accurate and efficient signal processing methods are still required. In this paper, the matrix pencil method (MPM), as an efficient method with good frequency resolution, is applied to back-reflected microwave signals to extract vital signs. It is shown that decomposing of the signal to its damping exponentials fulfilled by MPM gives the opportunity to separate signals, e.g., breathing and heartbeat, with high precision. A publicly online dataset (GUARDIAN), obtained by a continuous wave microwave sensor, is applied to evaluate the performance of MPM. Two methods of bandpass filtering (BPF) and variational mode decomposition (VMD) are also implemented. In addition to the GUARDIAN dataset, these methods are also applied to signals acquired by an ultra-wideband (UWB) sensor. It is concluded that when the vital sign is sufficiently strong and pure, all methods, e.g., MPM, VMD, and BPF, are appropriate for vital sign monitoring. However, in noisy cases, MPM has better performance. Therefore, for non-contact microwave vital sign monitoring, which is usually subject to noisy situations, MPM is a powerful method

    Clutter removal of near-field UWB SAR imaging for pipeline penetrating radar

    Get PDF
    Recently, ultrawideband (UWB) near-field synthetic aperture radar (SAR) imaging has been proposed for pipeline penetrating radar applications thanks to its capability in providing suitable resolution and penetration depth. Because of geometrical restrictions, there are many complicated sources of clutter in the pipe. However, this issue has not been investigated yet. In this article, we investigate some well-known clutter removal algorithms using full-wave simulated data and compare their results considering image quality, signal to clutter ratio and contrast. Among candidate algorithms, two-dimensional singular spectrum analysis (2-D SSA) shows a good potential to improve the signal to clutter ratio. However, basic 2-D SSA produces some artifacts in the image. Therefore, to mitigate this issue, we propose “modified 2-D SSA.” After developing the suitable clutter removal algorithm, wepropose a complete algorithm chain for pipeline imaging. An UWB nearfieldSARmonitoring system including anUWBM-sequence sensor and automatic positioner are implemented and the image of drilled perforations in a concrete pipe mimicking oil well structure as a case study is reconstructed to test the proposed algorithm. Compared to the literature, a comprehensive near-field SAR imaging algorithm including new clutter removal is proposed and its performance is verified by obtaining high-quality images in experimental results

    Conformal Array Pattern Synthesis Using a Hybrid WARP/2LB-MOPSO Algorithm

    Get PDF
    This paper addresses conformal array synthesis as a constrained multiobjective optimization problem. Simultaneous reduction of side lobe level (SLL) and cross-polarization (XPL) level is aimed with a constraint on main beam direction. A hybrid of weighted alternating reverse projection (WARP) and two local best multiobjective particle swarm optimization (2LB-MOPSO) is proposed to optimize the pattern. First, the WARP method finds a moderate and feasible solution. Second, 2LB-MOPSO begins with an initial population including the solution of WARP and penalty functions for constraint handling. Involving WARP result in the initial population of 2LB-MOPSO leads to higher convergence rate, avoiding local extermum traps and less sensitivity to penalty functions. Compared to WARP method which stagnates rapidly, the proposed hybrid method gives better SLL and XPL after adequate iterations. In addition, as 2LB-MOPSO offers a set of optimum solutions (Pareto front) instead of a single solution, this method provides more degrees of freedom in selection of proper practical arrays. Finally, to examine the mutual coupling consideration in array design, the same procedure was applied ignoring the mutual coupling between elements. The results show that the SLL and XPL strongly depend on mutual coupling

    Differential ultra-wideband microwave imaging: principle application challenges

    Get PDF
    Wideband microwave imaging is of interest wherever optical opaque scenarios need to be analyzed, as these waves can penetrate biological tissues, many building materials, or industrial materials. One of the challenges of microwave imaging is the computation of the image from the measurement data because of the need to solve extensive inverse scattering problems due to the sometimes complicated wave propagation. The inversion problem simplifies if only spatially limited objects—point objects, in the simplest case—with temporally variable scattering properties are of interest. Differential imaging uses this time variance by observing the scenario under test over a certain time interval. Such problems exist in medical diagnostics, in the search for surviving earthquake victims, monitoring of the vitality of persons, detection of wood pests, control of industrial processes, and much more. This paper gives an overview of imaging methods for point-like targets and discusses the impact of target variations onto the radar data. Because the target variations are very weak in many applications, a major issue of differential imaging concerns the suppression of random effects by appropriate data processing and concepts of radar hardware. The paper introduces related methods and approaches, and some applications illustrate their performance

    Conformal array pattern synthesis using a hybrid WARP/2LB-MOPSO algorithm,”

    No full text
    This paper addresses conformal array synthesis as a constrained multiobjective optimization problem. Simultaneous reduction of side lobe level (SLL) and cross-polarization (XPL) level is aimed with a constraint on main beam direction. A hybrid of weighted alternating reverse projection (WARP) and two local best multiobjective particle swarm optimization (2LB-MOPSO) is proposed to optimize the pattern. First, the WARP method finds a moderate and feasible solution. Second, 2LB-MOPSO begins with an initial population including the solution of WARP and penalty functions for constraint handling. Involving WARP result in the initial population of 2LB-MOPSO leads to higher convergence rate, avoiding local extermum traps and less sensitivity to penalty functions. Compared to WARP method which stagnates rapidly, the proposed hybrid method gives better SLL and XPL after adequate iterations. In addition, as 2LB-MOPSO offers a set of optimum solutions (Pareto front) instead of a single solution, this method provides more degrees of freedom in selection of proper practical arrays. Finally, to examine the mutual coupling consideration in array design, the same procedure was applied ignoring the mutual coupling between elements. The results show that the SLL and XPL strongly depend on mutual coupling

    Analysis and Design of Broadband Simultaneous Wireless Information and Power Transfer (SWIPT) System Considering Rectifier Effect

    Get PDF
    The deployment of internet of things (IOT) devices in several applications is limited by their need of having batteries as a power source. This has led many researchers to make efforts on simultaneous wireless information and power transfer (SWIPT) systems design. Increasing the bandwidth provides higher capacity; however, due to the narrowband response of conventional power transfer subsystems, power delivery is decreased. In order to design an optimum wideband SWIPT system, first, a realistic model of the system, including antennas and rectifier, should be developed. Then, proper methods to increase the bandwidth of subsystems for optimum power delivery can be proposed. In this paper, a wideband SWIPT system (300 MHz bandwidth at the center frequency of 1.44 GHz) while considering realistic limitations of antennas and rectifiers is designed. To optimize the system performance, a novel power allocation method is proposed. Using this algorithm, Pareto fronts of Shannon channel capacity versus power delivery in three scenarios (broadband antennas without considering rectifier, broadband antennas with narrowband rectifier and broadband antennas with broadband rectifier) are compared. The results show that, without considering the realistic behaviour of the subsystems, the performance is largely overestimated. Furthermore, this model allows for designers to optimize each subsystem directly and assess its effect on the overall SWIPT system performance

    Microwave Angiography by Ultra-Wideband Sounding: A Preliminary Investigation

    No full text
    Angiography is a very informative method for physicians such as cardiologists, neurologists and neuroscientists. The current modalities experience some shortages, e.g., ultrasound is very operator dependent. The computerized tomography (CT) and magnetic resonance (MR) angiography are very expensive and near infrared spectroscopy cannot capture the deep arteries. Microwave technology has the potential to address some of these issues while compromising between operator dependency, cost, speed, penetration depth and resolution. This paper studies the feasibility of microwave signals for monitoring of arteries. To this aim, a homogenous phantom mimicking body tissue is built. Four elastic tubes simulate arteries and a mechanical system creates pulsations in these arteries. A multiple input multiple output (MIMO) array of ultra-wideband (UWB) transmitters and receivers illuminates the phantom and captures the reflected signals over the desired observation time period. Since we are only interested in the imaging of dynamic parts, i.e., arteries, the static clutters can be suppressed easily by background subtraction method. To obtain a fast image of arteries, which are pulsating with the heartbeat rate, we calculate the Fourier transform of each channel of the MIMO system over the observation time and apply delay and sum (DAS) beamforming method on the heartbeat rate aligned spectral component. The results show that the lateral and longitudinal images and motion mode (M-mode) time series of different points of phantom have the potential to be used for diagnosis

    IoT-Based Vital Sign Monitoring Using UWB Sensor

    No full text
    International audienc
    corecore